Solved

Provide an Appropriate Response f(x)=ln(sinx)f ( x ) = \ln ( \sin x )

Question 282

Multiple Choice

Provide an appropriate response.
-Find the absolute maximum and minimum values of f(x) =ln(sinx) f ( x ) = \ln ( \sin x ) on [π6,2π3]\left[ \frac { \pi } { 6 } , \frac { 2 \pi } { 3 } \right] .


A) Maximum =0= 0 at x=0x = 0 , minimum =ln2= - \ln 2 at x=π6x = \frac { \pi } { 6 }
B) Maximum =0= 0 at x=π2x = \frac { \pi } { 2 } , minimum =ln32= \ln \frac { \sqrt { 3 } } { 2 } at x=2π3x = \frac { 2 \pi } { 3 }
C) Maximum =0= 0 at x=π2x = \frac { \pi } { 2 } , minimum =ln2= - \ln 2 at x=π6x = \frac { \pi } { 6 }
D) Maximum =0= 0 at x=π2x = \frac { \pi } { 2 } , minimum =ln2= - \ln 2 at x=2π3x = \frac { 2 \pi } { 3 }

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions