Solved

Sketch the Graph and Show All Local Extrema and Inflection =x4+2x210= - x ^ { 4 } + 2 x ^ { 2 } - 10

Question 46

Multiple Choice

Sketch the graph and show all local extrema and inflection points.
-y =x4+2x210= - x ^ { 4 } + 2 x ^ { 2 } - 10


A) Absolute maxima: (1,9) ,(1,9) ( - 1 , - 9 ) , ( 1 , - 9 )
Inflection points: (13,1) ,(13,1) \left( - \sqrt { \frac { 1 } { 3 } } , 1 \right) , \left( \sqrt { \frac { 1 } { 3 } } , 1 \right)
 Sketch the graph and show all local extrema and inflection points. -y = - x ^ { 4 } + 2 x ^ { 2 } - 10  A)  Absolute maxima:  ( - 1 , - 9 )  , ( 1 , - 9 )   Inflection points:  \left( - \sqrt { \frac { 1 } { 3 } } , 1 \right)  , \left( \sqrt { \frac { 1 } { 3 } } , 1 \right)       B)  Absolute maxima:  ( - 1 , - 9 )  , ( 1 , - 9 )    Local minimum:  ( 0 , - 10 )   No inflection points    C)  Absolute minima:  ( - 1,9 )  , ( 1,9 )   Inflection point:  \left( - \sqrt { \frac { 1 } { 3 } } , \frac { 85 } { 9 } \right)  , \left( \sqrt { \frac { 1 } { 3 } } , \frac { 85 } { 9 } \right)      D)  Absolute maxima:  ( - 1 , - 9 )  , ( 1 , - 9 )   Local maximum:  ( 0,10 )   Local minimum:  ( 0 , - 10 )    Inflection points:  \left( - \sqrt { \frac { 1 } { 3 } } , 1 \right)  , \left( \sqrt { \frac { 1 } { 3 } } , 1 \right)

B) Absolute maxima: (1,9) ,(1,9) ( - 1 , - 9 ) , ( 1 , - 9 )
Local minimum: (0,10) ( 0 , - 10 ) No inflection points
 Sketch the graph and show all local extrema and inflection points. -y = - x ^ { 4 } + 2 x ^ { 2 } - 10  A)  Absolute maxima:  ( - 1 , - 9 )  , ( 1 , - 9 )   Inflection points:  \left( - \sqrt { \frac { 1 } { 3 } } , 1 \right)  , \left( \sqrt { \frac { 1 } { 3 } } , 1 \right)       B)  Absolute maxima:  ( - 1 , - 9 )  , ( 1 , - 9 )    Local minimum:  ( 0 , - 10 )   No inflection points    C)  Absolute minima:  ( - 1,9 )  , ( 1,9 )   Inflection point:  \left( - \sqrt { \frac { 1 } { 3 } } , \frac { 85 } { 9 } \right)  , \left( \sqrt { \frac { 1 } { 3 } } , \frac { 85 } { 9 } \right)      D)  Absolute maxima:  ( - 1 , - 9 )  , ( 1 , - 9 )   Local maximum:  ( 0,10 )   Local minimum:  ( 0 , - 10 )    Inflection points:  \left( - \sqrt { \frac { 1 } { 3 } } , 1 \right)  , \left( \sqrt { \frac { 1 } { 3 } } , 1 \right)

C) Absolute minima: (1,9) ,(1,9) ( - 1,9 ) , ( 1,9 )
Inflection point: (13,859) ,(13,859) \left( - \sqrt { \frac { 1 } { 3 } } , \frac { 85 } { 9 } \right) , \left( \sqrt { \frac { 1 } { 3 } } , \frac { 85 } { 9 } \right)
 Sketch the graph and show all local extrema and inflection points. -y = - x ^ { 4 } + 2 x ^ { 2 } - 10  A)  Absolute maxima:  ( - 1 , - 9 )  , ( 1 , - 9 )   Inflection points:  \left( - \sqrt { \frac { 1 } { 3 } } , 1 \right)  , \left( \sqrt { \frac { 1 } { 3 } } , 1 \right)       B)  Absolute maxima:  ( - 1 , - 9 )  , ( 1 , - 9 )    Local minimum:  ( 0 , - 10 )   No inflection points    C)  Absolute minima:  ( - 1,9 )  , ( 1,9 )   Inflection point:  \left( - \sqrt { \frac { 1 } { 3 } } , \frac { 85 } { 9 } \right)  , \left( \sqrt { \frac { 1 } { 3 } } , \frac { 85 } { 9 } \right)      D)  Absolute maxima:  ( - 1 , - 9 )  , ( 1 , - 9 )   Local maximum:  ( 0,10 )   Local minimum:  ( 0 , - 10 )    Inflection points:  \left( - \sqrt { \frac { 1 } { 3 } } , 1 \right)  , \left( \sqrt { \frac { 1 } { 3 } } , 1 \right)

D) Absolute maxima: (1,9) ,(1,9) ( - 1 , - 9 ) , ( 1 , - 9 ) Local maximum: (0,10) ( 0,10 ) Local minimum: (0,10) ( 0 , - 10 )

Inflection points: (13,1) ,(13,1) \left( - \sqrt { \frac { 1 } { 3 } } , 1 \right) , \left( \sqrt { \frac { 1 } { 3 } } , 1 \right)
 Sketch the graph and show all local extrema and inflection points. -y = - x ^ { 4 } + 2 x ^ { 2 } - 10  A)  Absolute maxima:  ( - 1 , - 9 )  , ( 1 , - 9 )   Inflection points:  \left( - \sqrt { \frac { 1 } { 3 } } , 1 \right)  , \left( \sqrt { \frac { 1 } { 3 } } , 1 \right)       B)  Absolute maxima:  ( - 1 , - 9 )  , ( 1 , - 9 )    Local minimum:  ( 0 , - 10 )   No inflection points    C)  Absolute minima:  ( - 1,9 )  , ( 1,9 )   Inflection point:  \left( - \sqrt { \frac { 1 } { 3 } } , \frac { 85 } { 9 } \right)  , \left( \sqrt { \frac { 1 } { 3 } } , \frac { 85 } { 9 } \right)      D)  Absolute maxima:  ( - 1 , - 9 )  , ( 1 , - 9 )   Local maximum:  ( 0,10 )   Local minimum:  ( 0 , - 10 )    Inflection points:  \left( - \sqrt { \frac { 1 } { 3 } } , 1 \right)  , \left( \sqrt { \frac { 1 } { 3 } } , 1 \right)

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions