Solved

Solve the Problem t\mathrm { t } v=8πsin4tπ,s(π2)=2\mathrm { v } = \frac { 8 } { \pi } \sin \frac { 4 \mathrm { t } } { \pi } , \mathrm { s } \left( \pi ^ { 2 } \right) = 2

Question 226

Multiple Choice

Solve the problem.
-Given the velocity and initial position of a body moving along a coordinate line at time t, find the body's position t\mathrm { t } .
v=8πsin4tπ,s(π2) =2\mathrm { v } = \frac { 8 } { \pi } \sin \frac { 4 \mathrm { t } } { \pi } , \mathrm { s } \left( \pi ^ { 2 } \right) = 2


A) s=2cos4tπ+3.3073s = - 2 \cos \frac { 4 t } { \pi } + 3.3073
B) s=2cos4tπ+8.2134s = - 2 \cos \frac { 4 t } { \pi } + 8.2134
C) s=2cos4tπ+4s = 2 \cos \frac { 4 t } { \pi } + 4
D) s=2cos4tπ+4s = - 2 \cos \frac { 4 t } { \pi } + 4 time

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions