Solved

Find the Derivative of the Function y=θ4e2θcos4θ\mathrm { y } = \theta ^ { 4 } \mathrm { e } ^ { - 2 \theta } \cos 4 \theta

Question 251

Multiple Choice

Find the derivative of the function.
- y=θ4e2θcos4θ\mathrm { y } = \theta ^ { 4 } \mathrm { e } ^ { - 2 \theta } \cos 4 \theta


A) 56θ3e2θsin4θ- 56 \theta ^ { 3 } \mathrm { e } ^ { - 2 \theta } \sin 4 \theta
B) θ3e2θ(4cos4θ2cos4θ+4cos4θ) \theta ^ { 3 } \mathrm { e } ^ { - 2 \theta } ( 4 \cos 4 \theta - 2 \cos 4 \theta + 4 \cos 4 \theta )
C) 4θ3e2θsin4θ- 4 \theta ^ { 3 } \mathrm { e } ^ { - 2 \theta } \sin 4 \theta
D) θ3e2θ(4cos4θ2θcos4θ4θsin4θ) \theta ^ { 3 } \mathrm { e } ^ { - 2 \theta } ( 4 \cos 4 \theta - 2 \theta \cos 4 \theta - 4 \theta \sin 4 \theta )

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions