Solved

Use Implicit Differentiation to Find Dy/dx e3x=sin(x+2y)\mathrm { e } ^ { 3 \mathrm { x } } = \sin ( \mathrm { x } + 2 \mathrm { y } )

Question 303

Multiple Choice

Use implicit differentiation to find dy/dx.
- e3x=sin(x+2y) \mathrm { e } ^ { 3 \mathrm { x } } = \sin ( \mathrm { x } + 2 \mathrm { y } )


A) dydx=3exsin(x+2y) \frac { d y } { d x } = \frac { - 3 e ^ { x } } { \sin ( x + 2 y ) }
B) dydx=3ex2sin(x+2y) \frac { d y } { d x } = \frac { 3 e ^ { x } } { 2 \sin ( x + 2 y ) }
C) dydx=6exsin(x+2y) \frac { d y } { d x } = \frac { 6 e ^ { x } } { \sin ( x + 2 y ) }
D) dydx=3ex2sin(x+2y) \frac { d y } { d x } = - \frac { 3 e ^ { x } } { 2 \sin ( x + 2 y ) }

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions