Solved

Find the Derivative of Y with Respect to the Independent y=log2(sinθcosθeθ8θ)y = \log _ { 2 } \left( \frac { \sin \theta \cos \theta } { e ^ { \theta } 8 ^ { \theta } } \right)

Question 481

Multiple Choice

Find the derivative of y with respect to the independent variable.
- y=log2(sinθcosθeθ8θ) y = \log _ { 2 } \left( \frac { \sin \theta \cos \theta } { e ^ { \theta } 8 ^ { \theta } } \right)


A) 1ln2(cotθtanθln81) \frac { 1 } { \ln 2 } ( \cot \theta - \tan \theta - \ln 8 - 1 )
B) e2(cosθsinθeθ8θ) \mathrm { e } ^ { 2 } \left( \cos \theta - \sin \theta - \mathrm { e } ^ { \theta } 8 ^ { \theta } \right)
C) 1ln2(secθcscθln81) \frac { 1 } { \ln 2 } ( \sec \theta \csc \theta - \ln 8 - 1 )
D) 1ln2(eθθθsinθcosθ) \frac { 1 } { \ln 2 } \left( \frac { e ^ { \theta } \theta ^ { \theta } } { \sin \theta \cos \theta } \right)

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions