Solved

Solve the Problem rr And the Circumference C=2πrC = 2 \pi r

Question 354

Multiple Choice

Solve the problem.
-Suppose that the radius rr and the circumference C=2πrC = 2 \pi r of a circle are differentiable functions of t.t . Write an equation that relates dC/dt\mathrm { dC } / \mathrm { dt } to dr/dt\mathrm { dr } / \mathrm { dt } .


A) dCdt=2πdrdt\frac { d C } { d t } = 2 \pi \frac { d r } { d t }
B) dCdt=2πrdrdt\frac { d C } { d t } = 2 \pi r \frac { d r } { d t }
C) dCdt=drdt\frac { d C } { d t } = \frac { d r } { d t }
D) drdt=2πdCdt\frac { d r } { d t } = 2 \pi \frac { d C } { d t }

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions