Solved

Solve the Problem R\mathrm { R } Of a Projectile Is Related to the Initial Velocity

Question 468

Multiple Choice

Solve the problem.
-The range R\mathrm { R } of a projectile is related to the initial velocity v\mathrm { v } and projection angle θ\theta by the equation R=v2sin2θgR = \frac { v ^ { 2 } \sin 2 \theta } { g } , where gg is a constant. How is dR/dtd R / d t related to dv/dtd v / d t if θ\theta is constant?


A) dRdt=2v2cos2θgdvdt\frac { \mathrm { dR } } { \mathrm { dt } } = \frac { 2 \mathrm { v } ^ { 2 } \cos 2 \theta } { \mathrm { g } } \frac { \mathrm { dv } } { \mathrm { dt } }
B) dRdt=2vsin2θgdvdt\frac { \mathrm { dR } } { \mathrm { dt } } = \frac { 2 \mathrm { v } \sin 2 \theta } { \mathrm { g } } \frac { \mathrm { dv } } { \mathrm { dt } }
C) dRdt=2vgdvdt\frac { d R } { d t } = \frac { 2 v } { g } \frac { d v } { d t }
D) dRdt=2vcos2θgdvdt\frac { \mathrm { dR } } { \mathrm { dt } } = \frac { 2 \mathrm { v } \cos 2 \theta } { \mathrm { g } } \frac { \mathrm { dv } } { \mathrm { dt } }

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions