Solved

Use a CAS to Plot the Function near the Point limxag(x)f(x)=g(a)f(a)\lim _ { x \rightarrow a } \frac { g ( x ) } { f ( x ) } = \frac { g ( a ) } { f ( a ) }

Question 24

Multiple Choice

Use a CAS to plot the function near the point x0 being approached. From your plot guess the value of the limit.
-Write the formal notation for the principle "the limit of a quotient is the quotient of the limits" and include a statement of any restrictions on the principle.


A) limxag(x) f(x) =g(a) f(a) \lim _ { x \rightarrow a } \frac { g ( x ) } { f ( x ) } = \frac { g ( a ) } { f ( a ) } .
B) If limxag(x) =M\lim _ { x \rightarrow a } g ( x ) = M and limxaf(x) =L\lim _ { x \rightarrow a } f ( x ) = L , then limxag(x) f(x) =limxag(x) limxaf(x) =ML\lim _ { x \rightarrow a } \frac { g ( x ) } { f ( x ) } = \frac { \lim _ { x \rightarrow a } g ( x ) } { \lim _ { x \rightarrow a } f ( x ) } = \frac { M } { L } , provided that L0L \neq 0 .
C) If limxag(x) =M\lim _ { x \rightarrow a } g ( x ) = M and limxaf(x) =L\lim _ { x \rightarrow a } f ( x ) = L , then limxag(x) f(x) =limxag(x) limxaf(x) =ML\lim _ { x \rightarrow a } \frac { g ( x ) } { f ( x ) } = \frac { \lim _ { x \rightarrow a } g ( x ) } { \lim _ { x \rightarrow a } f ( x ) } = \frac { M } { L } , provided that f(a) 0f ( a ) \neq 0 .
D) limxag(x) f(x) =g(a) f(a) \lim _ { x \rightarrow a } \frac { g ( x ) } { f ( x ) } = \frac { g ( a ) } { f ( a ) } , provided that f(a) 0f ( a ) \neq 0 .

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions