Solved

A Function f(x)\mathrm { f } ( \mathrm { x } )

Question 93

Multiple Choice

A function f(x) \mathrm { f } ( \mathrm { x } ) , a point c\mathrm { c } , the limit of f(x) \mathrm { f } ( \mathrm { x } ) as xx approaches c\mathrm { c } , and a positive number ε\varepsilon is given. Find a number δ>0\delta > 0 such that for all x,0<xc<δf(x) L<εx , 0 < | \mathrm { x } - \mathrm { c } | < \delta \Rightarrow | \mathrm { f } ( \mathrm { x } ) - \mathrm { L } | < \varepsilon .
- f(x) =8x9,L=15,c=3, and ε=0.01f ( x ) = 8 x - 9 , L = 15 , c = 3 \text {, and } \varepsilon = 0.01


A) δ=0.0025\delta = 0.0025
B) δ=0.003333\delta = 0.003333
C) δ=0.000625\delta = 0.000625
D) δ=0.00125\delta = 0.00125

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions