Solved

A Function f(x)\mathrm { f } ( \mathrm { x } )

Question 115

Multiple Choice

A function f(x) \mathrm { f } ( \mathrm { x } ) , a point c\mathrm { c } , the limit of f(x) \mathrm { f } ( \mathrm { x } ) as xx approaches c\mathrm { c } , and a positive number ε\varepsilon is given. Find a number δ>0\delta > 0 such that for all x,0<xc<δf(x) L<εx , 0 < | \mathrm { x } - \mathrm { c } | < \delta \Rightarrow | \mathrm { f } ( \mathrm { x } ) - \mathrm { L } | < \varepsilon .
- f(x) =mx+b,m>0,L=m5+b,c=15, and ε=c>0f ( x ) = m x + b , m > 0 , L = \frac { m } { 5 } + b , c = \frac { 1 } { 5 } , \text { and } \varepsilon = c > 0


A) δ=c5\delta = \frac { c } { 5 }
B) δ=cm\delta = \frac { c } { m }
C) δ=5m\delta = \frac { 5 } { m }
D) δ=15+cm\delta = \frac { 1 } { 5 } + \frac { c } { m }

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions