Solved

A Function f(x)\mathrm { f } ( \mathrm { x } )

Question 59

Multiple Choice

A function f(x) \mathrm { f } ( \mathrm { x } ) , a point c\mathrm { c } , the limit of f(x) \mathrm { f } ( \mathrm { x } ) as xx approaches c\mathrm { c } , and a positive number ε\varepsilon is given. Find a number δ>0\delta > 0 such that for all x,0<xc<δf(x) L<εx , 0 < | \mathrm { x } - \mathrm { c } | < \delta \Rightarrow | \mathrm { f } ( \mathrm { x } ) - \mathrm { L } | < \varepsilon .
- f(x) =x2+16x+60x+6,c=6,ε=0.02f ( x ) = \frac { x ^ { 2 } + - 16 x + 60 } { x + - 6 } , c = 6 , \varepsilon = 0.02


A) L=0;δ=0.02\mathrm { L } = 0 ; \delta = 0.02
B) L=20;δ=0.03L = - 20 ; \delta = 0.03
C) L=16;δ=0.03\mathrm { L } = - 16 ; \mathrm { \delta } = 0.03
D) L=4;δ=0.02\mathrm { L } = - 4 ; \mathrm { \delta } = 0.02

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions