Solved

Provide an Appropriate Response limxef(x)=L\lim _ { x \rightarrow e } f ( x ) = L

Question 179

Multiple Choice

Provide an appropriate response.
-The definition of the limit, limxef(x) =L\lim _ { x \rightarrow e } f ( x ) = L , means if given any number ε>0\varepsilon > 0 , there exists a number δ>0\delta > 0 , such that for all x,0<xc<δx , 0 < | x - c | < \delta implies_____


A) f(x) L>ε| f ( x ) - L | > \varepsilon
B) f(x) L<δ| f ( x ) - L | < \delta
C) f(x) L<ε| \mathrm { f } ( \mathrm { x } ) - \mathrm { L } | < \varepsilon
D) f(x) L>δ| f ( x ) - L | > \delta

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions