Solved

Solve the Problem G=P(x,y)i+Q(x,y)j\mathrm { G } = \mathrm { P } ( \mathrm { x } , \mathrm { y } ) \mathbf { i } + \mathrm { Q } ( \mathrm { x } , \mathrm { y } ) \mathbf { j }

Question 166

Multiple Choice

Solve the problem.
-Find a field G=P(x,y) i+Q(x,y) j\mathrm { G } = \mathrm { P } ( \mathrm { x } , \mathrm { y } ) \mathbf { i } + \mathrm { Q } ( \mathrm { x } , \mathrm { y } ) \mathbf { j } in the xyplanex y - p l a n e with the property that at any point (a,b) (0,0) ,G( a , b ) \neq ( 0,0 ) , \mathrm { G } is a unit vector pointing away from the origin.


A) xi+yjx2+y2- \frac { x i + y j } { \sqrt { x ^ { 2 } + y ^ { 2 } } }
B) xi+yjx i + y j
C) xi+yjx2+y2\frac { x i + y j } { \sqrt { x ^ { 2 } + y ^ { 2 } } }
D) xiyjx2y2\frac { x i - y j } { \sqrt { x ^ { 2 } - y ^ { 2 } } }

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions