Solved

Find the Flux of the Curl of Field F Through

Question 53

Multiple Choice

Find the flux of the curl of field F through the shell S.
- F=(zy) i+(xz) j+(zx) k;S:r(r,θ) =rcosθi+rsinθj+(9r2) k,0r3 and 0θ2π\mathbf { F } = ( \mathrm { z } - \mathrm { y } ) \mathbf { i } + ( \mathrm { x } - \mathrm { z } ) \mathbf { j } + ( \mathrm { z } - \mathrm { x } ) \mathbf { k } ; \mathrm { S } : \mathrm { r } ( \mathrm { r } , \theta ) = \mathrm { r } \cos \theta \mathbf { i } + \mathrm { r } \sin \theta \mathbf { j } + \left( 9 - \mathrm { r } ^ { 2 } \right) \mathbf { k } , 0 \leq \mathrm { r } \leq 3 \text { and } 0 \leq \theta \leq 2 \pi


A) 36π- 36 \pi
B) 36π36 \pi
C) 18π- 18 \pi
D) 18π18 \pi

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions