Solved

Solve the Problem D\mathrm { D } In Space Maximizes the Value of the Integral

Question 34

Multiple Choice

Solve the problem.
-What domain D\mathrm { D } in space maximizes the value of the integral
(x281+y236+z241) dV?\iiint \left( \frac { x ^ { 2 } } { 81 } + \frac { y ^ { 2 } } { 36 } + \frac { z ^ { 2 } } { 4 } - 1 \right) d V ?


A) D=D = the boundary of the ellipsoid x281+y236+z24=1\frac { x ^ { 2 } } { 81 } + \frac { y ^ { 2 } } { 36 } + \frac { z ^ { 2 } } { 4 } = 1 .
B) D=D = the boundary and interior of the ellipsoid x281+y236+z24=1\frac { x ^ { 2 } } { 81 } + \frac { y ^ { 2 } } { 36 } + \frac { z ^ { 2 } } { 4 } = 1 .
C) D=R3\mathrm { D } = \mathcal { R } ^ { 3 }
D) No such minimum domain exists.

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions