Solved

Solve the Problem δ(x,y,z)=136x2y2\delta ( x , y , z ) = \frac { 1 } { 36 - x ^ { 2 } - y ^ { 2 } }

Question 85

Multiple Choice

Solve the problem.
-Find the center of mass of the region of density δ(x,y,z) =136x2y2\delta ( x , y , z ) = \frac { 1 } { 36 - x ^ { 2 } - y ^ { 2 } } bounded by the paraboloid z=36x2y2z = 36 - x ^ { 2 } - y ^ { 2 } and the xyx y -plane.


A) xˉ=0,yˉ=0,zˉ=2\bar { x } = 0 , \bar { y } = 0 , \bar { z } = 2
B) xˉ=0,yˉ=0,zˉ=6\bar { x } = 0 , \bar { y } = 0 , \bar { z } = 6
C) xˉ=0,yˉ=0,zˉ=3\bar { x } = 0 , \bar { y } = 0 , \bar { z } = 3
D) xˉ=0,yˉ=0,zˉ=12\bar { x } = 0 , \bar { y } = 0 , \bar { z } = \frac { 1 } { 2 }

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions