Solved

Solve the Problem DD Be the Region Bounded Below by The xyx y

Question 160

Multiple Choice

Solve the problem.
-Let DD be the region bounded below by the xyx y -plane, on the side by the cylinder r=9sinθr = 9 \sin \theta , and on top by the paraboloid z=5r2z = 5 r ^ { 2 } . Set up the triple integral in cylindrical coordinates that gives the volume of DD using the order of integration dzdrdθ\mathrm { dz } \mathrm { dr } \mathrm { d } \theta .


A) 0π/409sinθ05r2rdzdrdθ\int _ { 0 } ^ { \pi / 4 } \int _ { 0 } ^ { 9 \sin \theta } \int _ { 0 } ^ { 5 r ^ { 2 } } r d z d r d \theta
B) 0π09sinθ05r2rdzdrdθ\int _ { 0 } ^ { \pi } \int _ { 0 } ^ { 9 \sin \theta } \int _ { 0 } ^ { 5 r ^ { 2 } } r d z d r d \theta
C) 02π09sinθ05r2rdzdrdθ\int _ { 0 } ^ { 2 \pi } \int _ { 0 } ^ { 9 \sin \theta } \int _ { 0 } ^ { 5 r ^ { 2 } } r d z d r d \theta
D) 0π/209sinθ05r2rdzdrdθ\int _ { 0 } ^ { \pi / 2 } \int _ { 0 } ^ { 9 \sin \theta } \int _ { 0 } ^ { 5 r ^ { 2 } } r d z d r d \theta

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions