Solved

Solve the Problem ϱ=9\varrho = 9 In Spherical Coordinates 02π0π09 dddφdθ\int _ { 0 } ^ { 2 \pi } \int _ { 0 } ^ { \pi } \int _ { 0 } ^ { 9 } \mathrm {~d} d \operatorname { d } \varphi \mathrm { d } \theta

Question 192

Multiple Choice

Solve the problem.
-Set up the triple integral for the volume of the sphere ϱ=9\varrho = 9 in spherical coordinates.


A) 02π0π09 dddφdθ\int _ { 0 } ^ { 2 \pi } \int _ { 0 } ^ { \pi } \int _ { 0 } ^ { 9 } \mathrm {~d} d \operatorname { d } \varphi \mathrm { d } \theta
B) 02π0π/209ϱ2sinφdedφdθ\int _ { 0 } ^ { 2 \pi } \int _ { 0 } ^ { \pi / 2 } \int _ { 0 } ^ { 9 } \varrho ^ { 2 } \sin \varphi \mathrm { de } \mathrm { d } \varphi \mathrm { d } \theta
C) 02π0π09ϱ2sinφdρdφdθ\int _ { 0 } ^ { 2 \pi } \int _ { 0 } ^ { \pi } \int _ { 0 } ^ { 9 } \varrho ^ { 2 } \sin \varphi \mathrm { d } \rho \mathrm { d } \varphi \mathrm { d } \theta
D) 02π0π/209dedφdθ\int _ { 0 } ^ { 2 \pi } \int _ { 0 } ^ { \pi / 2 } \int _ { 0 } ^ { 9 } \mathrm { de } \mathrm { d } \varphi \mathrm { d } \theta

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions