Solved

Solve the Problem 02π0145964r2rdzdrdθ\int _ { 0 } ^ { 2 \pi } \int _ { 0 } ^ { \sqrt { 145 } } \int _ { 9 } ^ { \sqrt { 64 - r ^ { 2 } } } r d z d r d \theta

Question 4

Multiple Choice

Solve the problem.
-Let D be the smaller cap cut from a solid ball of radius 9 units by a plane 8 units from the center of the sphere. Set up the triple integral for the volume of D in cylindrical coordinates.


A) 02π0145964r2rdzdrdθ\int _ { 0 } ^ { 2 \pi } \int _ { 0 } ^ { \sqrt { 145 } } \int _ { 9 } ^ { \sqrt { 64 - r ^ { 2 } } } r d z d r d \theta
B) 02π017964r2rdzdrdθ\int _ { 0 } ^ { 2 \pi } \int _ { 0 } ^ { \sqrt { 17 } } \int _ { 9 } ^ { \sqrt { 64 - r ^ { 2 } } } \mathrm { rdzdrd \theta }
C) 02π017881r2rdzdrdθ\int _ { 0 } ^ { 2 \pi } \int _ { 0 } ^ { \sqrt { 17 } } \int _ { 8 } ^ { \sqrt { 81 - r ^ { 2 } } } r d z d r d \theta
D) 02π0145881r2rdzdrdθ\int _ { 0 } ^ { 2 \pi } \int _ { 0 } ^ { \sqrt { 145 } } \int _ { 8 } ^ { \sqrt { 81 - r ^ { 2 } } } r d z d r d \theta

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions