Solved

Solve the Problem B) C) D)

Question 62

Multiple Choice

Solve the problem.
-Let D be the smaller cap cut from a solid ball of radius 6 units by a plane 2 units from the center of the sphere. Set up the triple integral for the volume of D in rectangular coordinates.


A) 323232x232x2236x2y2dzdydx\int _ { - \sqrt { 32 } } ^ { \sqrt { 32 } } \int _ { - \sqrt { 32 - x ^ { 2 } } } ^ { \sqrt { 32 - x ^ { 2 } } } \int _ { 2 } ^ { \sqrt { 36 - x ^ { 2 } - y ^ { 2 } } } d z d y d x
B) 323232x232x264x2y2dzdydx\int _ { - \sqrt { 32 } } ^ { \sqrt { 32 } } \int _ { - \sqrt { 32 - x ^ { 2 } } } ^ { \sqrt { 32 - x ^ { 2 } } } \int _ { 6 } ^ { \sqrt { 4 - x ^ { 2 } - y ^ { 2 } } } d z d y d x
C) 404032x232x2236x2y2dzdydx\int _ { - \sqrt { 40 } } ^ { \sqrt { 40 } } \int _ { - \sqrt { 32 - x ^ { 2 } } } ^ { \sqrt { 32 - x ^ { 2 } } } \int _ { 2 } ^ { \sqrt { 36 - x ^ { 2 } - y ^ { 2 } } } d z d y d x
D) 404032x232x264x2y2dzdydx\int _ { - \sqrt { 40 } } ^ { \sqrt { 40 } } \int _ { - \sqrt { 32 - x ^ { 2 } } } ^ { \sqrt { 32 - x ^ { 2 } } } \int _ { 6 } ^ { \sqrt { 4 - x ^ { 2 } - y ^ { 2 } } } d z d y d x

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions