Solved

Solve the Problem z=78x2+y2z = \frac { 7 } { 8 } \sqrt { x ^ { 2 } + y ^ { 2 } }

Question 273

Multiple Choice

Solve the problem.
-Find the center of mass of the solid enclosed between the cone with equation z=78x2+y2z = \frac { 7 } { 8 } \sqrt { x ^ { 2 } + y ^ { 2 } } and the plane with equation z=7z = 7 if the density at any point is proportional to the distance from that point to the plane z=7z = 7 .


A) (xˉ,yˉ,zˉ) =(0,0,215) ( \bar { x } , \bar { y } , \bar { z } ) = \left( 0,0 , \frac { 21 } { 5 } \right)
B) (x,y,z) =(0,0,143) ( \overline { \mathrm { x } } , \overline { \mathrm { y } } , \overline { \mathrm { z } } ) = \left( 0,0 , \frac { 14 } { 3 } \right)
C) (xˉ,yˉ,zˉ) =(0,0,4912) ( \bar { x } , \bar { y } , \bar { z } ) = \left( 0,0 , \frac { 49 } { 12 } \right)
D) (xˉ,yˉ,zˉ) =(0,0,358) ( \bar { x } , \bar { y } , \bar { z } ) = \left( 0,0 , \frac { 35 } { 8 } \right)

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions