Solved

Solve the Problem f(x,y,z)=n=0(1)n(x+y)2n(2n)!z2nf ( x , y , z ) = \sum _ { n = 0 } ^ { \infty } \frac { ( - 1 ) ^ { n } ( x + y ) ^ { 2 n } } { ( 2 n ) ! z ^ { 2 n } }

Question 210

Multiple Choice

Solve the problem.
-Find an equation for the level surface of the function f(x,y,z) =n=0(1) n(x+y) 2n(2n) !z2nf ( x , y , z ) = \sum _ { n = 0 } ^ { \infty } \frac { ( - 1 ) ^ { n } ( x + y ) ^ { 2 n } } { ( 2 n ) ! z ^ { 2 n } } that passes through the point (π,π,1) ( \pi , \pi , 1 ) .


A) cos(x+yz) =0\cos \left( \frac { x + y } { z } \right) = 0
B) x+yz=2π\frac { x + y } { z } = 2 \pi
C) cos(x+yz) =2π\cos \left( \frac { x + y } { z } \right) = 2 \pi
D) x+yz=1\frac { x + y } { z } = 1

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions