Solved

Find the Equation for the Level Surface of the Function f(x,y,z)=n=0(zy+x)n2nnxn,(6,4,4)f ( x , y , z ) = \sum _ { n = 0 } ^ { \infty } \frac { ( z y + x ) ^ { n } } { 2 ^ { n } n _ { x } ^ { n } } , ( 6,4,4 )

Question 298

Multiple Choice

Find the equation for the level surface of the function through the given point.
- f(x,y,z) =n=0(zy+x) n2nnxn,(6,4,4) f ( x , y , z ) = \sum _ { n = 0 } ^ { \infty } \frac { ( z y + x ) ^ { n } } { 2 ^ { n } n _ { x } ^ { n } } , ( 6,4,4 )


A) zy+x2x=116\frac { z y + x } { 2 x } = \frac { 11 } { 6 }
B) (zy+x) n2nxn=116\frac { ( z y + x ) ^ { n } } { 2 n _ { x ^ { n } } } = \frac { 11 } { 6 }
C) The level surfaces cannot be determined.
D) n=0(zy+x) n2nxn=116\sum _ { n = 0 } ^ { \infty } \frac { ( z y + x ) ^ { n } } { 2 ^ { n } x ^ { n } } = \frac { 11 } { 6 }

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions