Solved

Write a Chain Rule Formula for the Following Derivative A)

Question 196

Multiple Choice

Write a chain rule formula for the following derivative.
- ux for u=f(p,q) ;p=g(x,y,z) ,q=h(x,y,z) \frac { \partial \mathrm { u } } { \partial \mathrm { x } } \text { for } \mathrm { u } = \mathrm { f } ( \mathrm { p } , \mathrm { q } ) ; \mathrm { p } = \mathrm { g } ( \mathrm { x } , \mathrm { y } , \mathrm { z } ) , \mathrm { q } = \mathrm { h } ( \mathrm { x } , \mathrm { y } , \mathrm { z } )


A) ux=uppx+uqqx\frac { \partial \mathrm { u } } { \partial \mathrm { x } } = \frac { \partial \mathrm { u } } { \partial \mathrm { p } } \frac { \partial \mathrm { p } } { \partial \mathrm { x } } + \frac { \partial \mathrm { u } } { \partial \mathrm { q } } \frac { \partial \mathrm { q } } { \partial \mathrm { x } }
B) ux=upxp+uqxq\frac { \partial \mathrm { u } } { \partial \mathrm { x } } = \frac { \partial \mathrm { u } } { \partial \mathrm { p } } \frac { \partial \mathrm { x } } { \partial \mathrm { p } } + \frac { \partial \mathrm { u } } { \partial \mathrm { q } } \frac { \partial \mathrm { x } } { \partial \mathrm { q } }
C) ux=uqqx\frac { \partial \mathrm { u } } { \partial \mathrm { x } } = \frac { \partial \mathrm { u } } { \partial \mathrm { q } } \frac { \partial \mathrm { q } } { \partial \mathrm { x } }
D) ux=uppx+uqqy+uqqz\frac { \partial \mathrm { u } } { \partial \mathrm { x } } = \frac { \partial \mathrm { u } } { \partial \mathrm { p } } \frac { \partial \mathrm { p } } { \partial \mathrm { x } } + \frac { \partial \mathrm { u } } { \partial \mathrm { q } } \frac { \partial \mathrm { q } } { \partial \mathrm { y } } + \frac { \partial \mathrm { u } } { \partial \mathrm { q } } \frac { \partial \mathrm { q } } { \partial \mathrm { z } }

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions