Solved

Find the Absolute Maximum and Minimum Values of the Function f(x,y)=x+y;f ( x , y ) = x + y ;

Question 151

Multiple Choice

Find the absolute maximum and minimum values of the function on the given curve.
-Function: f(x,y) =x+y;f ( x , y ) = x + y ; curve: x2+y2=49,y0x ^ { 2 } + y ^ { 2 } = 49 , y \geq 0 . (Use the parametric equations x=7cost,y=7sintx = 7 \cos t , y = 7 \sin t .)


A) Absolute maximum: 727 \sqrt { 2 } at t=π4t = \frac { \pi } { 4 } ; absolute minimum: 72- 7 \sqrt { 2 } at t=3π4t = \frac { 3 \pi } { 4 }
B) Absolute maximum: 727 \sqrt { 2 } at t=π4t = \frac { \pi } { 4 } ; absolute minimum: 7- 7 at t=πt = \pi
C) Absolute maximum: 7 at t=π2;t = \frac { \pi } { 2 } ; absolute minimum: 72- 7 \sqrt { 2 } at t=3π4t = \frac { 3 \pi } { 4 }
D) Absolute maximum: 7 at t=π2t = \frac { \pi } { 2 } ; absolute minimum: 7- 7 at t=πt = \pi

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions