Solved

Solve the Problem f(x,y,z)=2x3y+zf ( x , y , z ) = 2 x - 3 y + z

Question 386

Multiple Choice

Solve the problem.
-Find the extreme values of f(x,y,z) =2x3y+zf ( x , y , z ) = 2 x - 3 y + z subject to x2+y2=1x ^ { 2 } + y ^ { 2 } = 1 and y2+z2=1y ^ { 2 } + z ^ { 2 } = 1 .


A) Maximum: 323 \sqrt { 2 } at (12,12,12) ;\left( \frac { 1 } { \sqrt { 2 } } , - \frac { 1 } { \sqrt { 2 } } , \frac { 1 } { \sqrt { 2 } } \right) ; minimum: 32- 3 \sqrt { 2 } at (12,12,12) \left( - \frac { 1 } { \sqrt { 2 } } , \frac { 1 } { \sqrt { 2 } } , - \frac { 1 } { \sqrt { 2 } } \right)
B) Maximum: 222 \sqrt { 2 } at (12,12,12) ;\left( \frac { 1 } { \sqrt { 2 } } , - \frac { 1 } { \sqrt { 2 } } , - \frac { 1 } { \sqrt { 2 } } \right) ; minimum: 22- 2 \sqrt { 2 } at (12,12,12) \left( - \frac { 1 } { \sqrt { 2 } } , \frac { 1 } { \sqrt { 2 } } , \frac { 1 } { \sqrt { 2 } } \right)
C) Maximum: 2\sqrt { 2 } at (12,12,12) ;\left( - \frac { 1 } { \sqrt { 2 } } , - \frac { 1 } { \sqrt { 2 } } , \frac { 1 } { \sqrt { 2 } } \right) ; minimum: 2- \sqrt { 2 } at (12,12,12) \left( \frac { 1 } { \sqrt { 2 } } , \frac { 1 } { \sqrt { 2 } } , - \frac { 1 } { \sqrt { 2 } } \right)
D) Maximum: 424 \sqrt { 2 } at (12,12,12) ;\left( \frac { 1 } { \sqrt { 2 } } , \frac { 1 } { \sqrt { 2 } } , \frac { 1 } { \sqrt { 2 } } \right) ; minimum: 42- 4 \sqrt { 2 } at (12,12,12) \left( - \frac { 1 } { \sqrt { 2 } } , - \frac { 1 } { \sqrt { 2 } } , - \frac { 1 } { \sqrt { 2 } } \right)

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions