Solved

Use Taylor's Formula to Find the Requested Approximation of F(x f(x,y)=ex+3y\mathrm { f } ( \mathrm { x } , \mathrm { y } ) = \mathrm { e } ^ { \mathrm { x } + 3 \mathrm { y } }

Question 238

Multiple Choice

Use Taylor's formula to find the requested approximation of f(x, y) near the origin.
-Quadratic approximation to f(x,y) =ex+3y\mathrm { f } ( \mathrm { x } , \mathrm { y } ) = \mathrm { e } ^ { \mathrm { x } + 3 \mathrm { y } }


A) x+3y+12x2+32xy+92y2x + 3 y + \frac { 1 } { 2 } x ^ { 2 } + \frac { 3 } { 2 } x y + \frac { 9 } { 2 } y ^ { 2 }
B) 1+x+3y+12x2+3xy+92y21 + x + 3 y + \frac { 1 } { 2 } x ^ { 2 } + 3 x y + \frac { 9 } { 2 } y ^ { 2 }
C) x+3y+12x2+92y2x + 3 y + \frac { 1 } { 2 } x ^ { 2 } + \frac { 9 } { 2 } y ^ { 2 }
D) 1+x+3y+12x2+92y21 + x + 3 y + \frac { 1 } { 2 } x ^ { 2 } + \frac { 9 } { 2 } y ^ { 2 }

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions