Solved

Provide an Appropriate Response By Solving the Following Initial Value Problem for a Vector

Question 104

Essay

Provide an appropriate response.
-Derive the equations
x=x0+v0k(1ekt)cosαy=y0+v0k(1ekt)sinα+gk2(1ktekt)\begin{array} { l } x = x _ { 0 } + \frac { v _ { 0 } } { k } \left( 1 - e ^ { - k t } \right) \cos \alpha \\y = y _ { 0 } + \frac { v _ { 0 } } { k } \left( 1 - e ^ { - k t } \right) \sin \alpha + \frac { g } { k ^ { 2 } } \left( 1 - k t - e ^ { - k t } \right)\end{array}
by solving the following initial value problem for a vector r\mathbf { r } in the plane.
 Differential equation d2rdt2=gjkv=gjkdrdt Initial conditions: r(0)=x0i+y0jdrdt(0)=v0=(v0cosα)i+(v0sinα)j\begin{aligned}\text { Differential equation } \frac { \mathrm { d } ^ { 2 } \mathbf { r } } { \mathrm { dt } ^ { 2 } } & = - g \mathbf { j } - \mathrm { k } \mathbf { v } = - \mathrm { g } \mathbf { j } - \mathrm { k } \frac { \mathrm { d } \mathbf { r } } { \mathrm { dt } } \\\text { Initial conditions: } \quad \mathrm { r } ( 0 ) & = \mathrm { x } _ { 0 } \mathbf { i } + \mathrm { y } _ { 0 } \mathbf { j } \\& \frac { \mathrm { d } \mathbf { r } } { \mathrm { dt } } ( 0 ) = \mathbf { v } _ { 0 } = \left( \mathrm { v } _ { 0 } \cos \alpha \right) \mathbf { i } + \left( \mathrm { v } _ { 0 } \sin \alpha \right) \mathbf { j }\end{aligned}
The drag coefficient k\mathrm { k } is a positive constant representing resistance due to air density, vo and α\alpha are the projectile's initial speed and launch angle, and gg is the acceleration of gravity.

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions