Solved

 Find the velocity vector in terms of ur and uθ\text { Find the velocity vector in terms of } u _ { r } \text { and } u _ { \theta } \text {. }

Question 37

Multiple Choice

 Find the velocity vector in terms of ur and uθ\text { Find the velocity vector in terms of } u _ { r } \text { and } u _ { \theta } \text {. }
- r=a(2cosθ) \mathrm { r } = \mathrm { a } ( 2 - \cos \theta ) and dθdt=7\frac { \mathrm { d } \theta } { \mathrm { dt } } = 7


A) v=(7asinθ) ur+7a(2cosθ) uθ\mathbf { v } = ( 7 a \sin \theta ) \mathbf { u } _ { \mathrm { r } } + 7 \mathrm { a } ( 2 - \cos \theta ) \mathbf { u } _ { \theta }
B) v=(7acosθ) ur+7a(2sinθ) uθ\mathbf { v } = ( 7 a \cos \theta ) \mathbf { u } _ { \mathrm { r } } + 7 \mathrm { a } ( 2 - \sin \theta ) \mathbf { u } _ { \theta }
C) v=7a(2cosθ) ur+(7asinθ) uθ\mathbf { v } = 7 a ( 2 - \cos \theta ) \mathbf { u } _ { \mathbf { r } } + ( 7 \mathrm { a } \sin \theta ) \mathbf { u } _ { \theta }
D) v=(2asinθ) ur+2a(7cosθ) uθ\mathbf { v } = ( 2 a \sin \theta ) \mathbf { u } _ { \mathrm { r } } + 2 \mathrm { a } ( 7 - \cos \theta ) \mathbf { u } _ { \theta }

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions