Solved

Solve the Problem v0v _ { 0 } In the Equation e=r0v02GM1e = \frac { r _ { 0 } v _ { 0 } ^ { 2 } } { G M } - 1

Question 92

Multiple Choice

Solve the problem.
-Find the values of v0v _ { 0 } in the equation e=r0v02GM1e = \frac { r _ { 0 } v _ { 0 } ^ { 2 } } { G M } - 1 that make the orbit described by r=(1+e) r01+ecosθr = \frac { ( 1 + e ) r _ { 0 } } { 1 + e \cos \theta } parabolic.


A) v0=2GMv _ { 0 } = 2 G M
B) v0=2GMr0v _ { 0 } = \frac { 2 G M } { r _ { 0 } }
C) v0=2GMr0v _ { 0 } = \sqrt { \frac { 2 G M } { r _ { 0 } } }
D) v0=2GMr0\mathrm { v } _ { 0 } = \sqrt { 2 \mathrm { GMr } 0 }

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions