Solved

Parametric Equations and And a Parameter Interval for the Motion x=2sint,y=5cost,0t2πx=2 \sin t, y=5 \cos t, 0 \leq t \leq 2 \pi

Question 356

Multiple Choice

Parametric equations and and a parameter interval for the motion of a particle in the xy-plane are given. Identify the particle's path by finding a Cartesian equation for it. Graph the Cartesian equation. Indicate the portion of the graph
traced by the particle and the direction of motion.
- x=2sint,y=5cost,0t2πx=2 \sin t, y=5 \cos t, 0 \leq t \leq 2 \pi
 Parametric equations and and a parameter interval for the motion of a particle in the xy-plane are given. Identify the particle's path by finding a Cartesian equation for it. Graph the Cartesian equation. Indicate the portion of the graph traced by the particle and the direction of motion. - x=2 \sin t, y=5 \cos t, 0 \leq t \leq 2 \pi     A)   \frac { x ^ { 2 } } { 4 } + \frac { y ^ { 2 } } { 25 } = 1 ; Counterclockwise from ( 2,0 )   to  ( 2,0 )   one rotation     B)   \frac { x ^ { 2 } } { 25 } + \frac { y ^ { 2 } } { 4 } = 1 ; Counterclockwise from ,   ( 5,0 )   to  ( 5,0 )  , one rotation   C)   \frac { x ^ { 2 } } { 25 } + \frac { y ^ { 2 } } { 4 } = 1 ; Counterclockwise from   ( 0,2 )   to  ( 0,2 )  , one rotation     D)   \frac { x ^ { 2 } } { 4 } + \frac { y ^ { 2 } } { 25 } = 1 ; Counterclockwise from  ( 0,5 )   to  ( 0,5 )  , one rotation


A) x24+y225=1\frac { x ^ { 2 } } { 4 } + \frac { y ^ { 2 } } { 25 } = 1 ; Counterclockwise from (2,0) ( 2,0 ) to (2,0) ( 2,0 ) one rotation
 Parametric equations and and a parameter interval for the motion of a particle in the xy-plane are given. Identify the particle's path by finding a Cartesian equation for it. Graph the Cartesian equation. Indicate the portion of the graph traced by the particle and the direction of motion. - x=2 \sin t, y=5 \cos t, 0 \leq t \leq 2 \pi     A)   \frac { x ^ { 2 } } { 4 } + \frac { y ^ { 2 } } { 25 } = 1 ; Counterclockwise from ( 2,0 )   to  ( 2,0 )   one rotation     B)   \frac { x ^ { 2 } } { 25 } + \frac { y ^ { 2 } } { 4 } = 1 ; Counterclockwise from ,   ( 5,0 )   to  ( 5,0 )  , one rotation   C)   \frac { x ^ { 2 } } { 25 } + \frac { y ^ { 2 } } { 4 } = 1 ; Counterclockwise from   ( 0,2 )   to  ( 0,2 )  , one rotation     D)   \frac { x ^ { 2 } } { 4 } + \frac { y ^ { 2 } } { 25 } = 1 ; Counterclockwise from  ( 0,5 )   to  ( 0,5 )  , one rotation

B) x225+y24=1\frac { x ^ { 2 } } { 25 } + \frac { y ^ { 2 } } { 4 } = 1 ; Counterclockwise from , (5,0) ( 5,0 ) to (5,0) ( 5,0 ) , one rotation
 Parametric equations and and a parameter interval for the motion of a particle in the xy-plane are given. Identify the particle's path by finding a Cartesian equation for it. Graph the Cartesian equation. Indicate the portion of the graph traced by the particle and the direction of motion. - x=2 \sin t, y=5 \cos t, 0 \leq t \leq 2 \pi     A)   \frac { x ^ { 2 } } { 4 } + \frac { y ^ { 2 } } { 25 } = 1 ; Counterclockwise from ( 2,0 )   to  ( 2,0 )   one rotation     B)   \frac { x ^ { 2 } } { 25 } + \frac { y ^ { 2 } } { 4 } = 1 ; Counterclockwise from ,   ( 5,0 )   to  ( 5,0 )  , one rotation   C)   \frac { x ^ { 2 } } { 25 } + \frac { y ^ { 2 } } { 4 } = 1 ; Counterclockwise from   ( 0,2 )   to  ( 0,2 )  , one rotation     D)   \frac { x ^ { 2 } } { 4 } + \frac { y ^ { 2 } } { 25 } = 1 ; Counterclockwise from  ( 0,5 )   to  ( 0,5 )  , one rotation
C) x225+y24=1\frac { x ^ { 2 } } { 25 } + \frac { y ^ { 2 } } { 4 } = 1 ; Counterclockwise from (0,2) ( 0,2 ) to (0,2) ( 0,2 ) , one rotation
 Parametric equations and and a parameter interval for the motion of a particle in the xy-plane are given. Identify the particle's path by finding a Cartesian equation for it. Graph the Cartesian equation. Indicate the portion of the graph traced by the particle and the direction of motion. - x=2 \sin t, y=5 \cos t, 0 \leq t \leq 2 \pi     A)   \frac { x ^ { 2 } } { 4 } + \frac { y ^ { 2 } } { 25 } = 1 ; Counterclockwise from ( 2,0 )   to  ( 2,0 )   one rotation     B)   \frac { x ^ { 2 } } { 25 } + \frac { y ^ { 2 } } { 4 } = 1 ; Counterclockwise from ,   ( 5,0 )   to  ( 5,0 )  , one rotation   C)   \frac { x ^ { 2 } } { 25 } + \frac { y ^ { 2 } } { 4 } = 1 ; Counterclockwise from   ( 0,2 )   to  ( 0,2 )  , one rotation     D)   \frac { x ^ { 2 } } { 4 } + \frac { y ^ { 2 } } { 25 } = 1 ; Counterclockwise from  ( 0,5 )   to  ( 0,5 )  , one rotation

D) x24+y225=1\frac { x ^ { 2 } } { 4 } + \frac { y ^ { 2 } } { 25 } = 1 ; Counterclockwise from (0,5) ( 0,5 ) to (0,5) ( 0,5 ) , one rotation
 Parametric equations and and a parameter interval for the motion of a particle in the xy-plane are given. Identify the particle's path by finding a Cartesian equation for it. Graph the Cartesian equation. Indicate the portion of the graph traced by the particle and the direction of motion. - x=2 \sin t, y=5 \cos t, 0 \leq t \leq 2 \pi     A)   \frac { x ^ { 2 } } { 4 } + \frac { y ^ { 2 } } { 25 } = 1 ; Counterclockwise from ( 2,0 )   to  ( 2,0 )   one rotation     B)   \frac { x ^ { 2 } } { 25 } + \frac { y ^ { 2 } } { 4 } = 1 ; Counterclockwise from ,   ( 5,0 )   to  ( 5,0 )  , one rotation   C)   \frac { x ^ { 2 } } { 25 } + \frac { y ^ { 2 } } { 4 } = 1 ; Counterclockwise from   ( 0,2 )   to  ( 0,2 )  , one rotation     D)   \frac { x ^ { 2 } } { 4 } + \frac { y ^ { 2 } } { 25 } = 1 ; Counterclockwise from  ( 0,5 )   to  ( 0,5 )  , one rotation

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions