Solved

Find the Coordinates of the Centroid of the Curve x=e5tcos5t,y=e5tsin5t,0tπ10x = e ^ { 5 t } \cos 5 t , y = e ^ { 5 t } \sin 5 t , 0 \leq t \leq \frac { \pi } { 10 }

Question 41

Multiple Choice

Find the coordinates of the centroid of the curve.
-Find the coordinates of the centroid of the curve x=e5tcos5t,y=e5tsin5t,0tπ10x = e ^ { 5 t } \cos 5 t , y = e ^ { 5 t } \sin 5 t , 0 \leq t \leq \frac { \pi } { 10 } .


A) (xˉ,yˉ) =(eπ+25(eπ/21) ,2eπ15(eπ/21) ) ( \bar { x } , \bar { y } ) = \left( \frac { e ^ { \pi + 2 } } { 5 \left( e ^ { \pi / 2 } - 1 \right) } , \frac { 2 e ^ { \pi } - 1 } { 5 \left( e ^ { \pi / 2 } - 1 \right) } \right)
B) (xˉ,yˉ) =(eπ25(eπ1) ,2eπ+15(eπ1) ) ( \bar { x } , \bar { y } ) = \left( \frac { e ^ { \pi } - 2 } { 5 \left( e ^ { \pi } - 1 \right) } , \frac { 2 e ^ { \pi } + 1 } { 5 \left( e ^ { \pi } - 1 \right) } \right)
C) (xˉ,yˉ) =(2eπ1eπ/21,eπ+1eπ/21) ( \bar { x } , \bar { y } ) = \left( \frac { 2 e ^ { \pi } - 1 } { e ^ { \pi / 2 } - 1 } , \frac { e ^ { \pi + 1 } } { e ^ { \pi / 2 } - 1 } \right)
D) (xˉ,yˉ) ={eπ25(eπ/21) ,2eπ+15(eπ/21) ) ( \bar { x } , \bar { y } ) = \left\{ \frac { e ^ { \pi } - 2 } { 5 \left( e ^ { \pi / 2 } - 1 \right) } , \frac { 2 e ^ { \pi } + 1 } { 5 \left( e ^ { \pi / 2 } - 1 \right) } \right)

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions