menu-iconExamlexExamLexServices

Discover

Ask a Question
  1. All Topics
  2. Topic
    Mathematics
  3. Study Set
    Thomas Calculus Early Transcendentals
  4. Exam
    Exam 12: Parametric Equations and Polar Coordinates
  5. Question
    Determine the Symmetries of the Curve\[r ^ { 2 } = - 3 \cos 3 \theta\]
Solved

Determine the Symmetries of the Curve r2=−3cos⁡3θr ^ { 2 } = - 3 \cos 3 \thetar2=−3cos3θ

Question 186

Question 186

Multiple Choice

Determine the symmetries of the curve.
- r2=−3cos⁡3θr ^ { 2 } = - 3 \cos 3 \thetar2=−3cos3θ


A) Origin only
B) No symmetry
C) x-axis, y-axis, origin
D) x-axis only

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions

Q181: Find the standard-form equation for an

Q182: Graph.<br>- <span class="ql-formula" data-value="x ^ {

Q183: Find the focus and directrix of

Q184: <span class="ql-formula" data-value="\text { Find a polar

Q185: Solve the problem.<br>-The hyperbola <span

Q187: Find the eccentricity of the hyperbola.<br>-

Q188: Replace the polar equation with an

Q189: Find the length of the curve.<br>-The

Q190: Graph the polar equation.<br>- <span class="ql-formula"

Q191: Parametric equations and and a parameter

Examlex

ExamLex

About UsContact UsPerks CenterHomeschoolingTest Prep

Work With Us

Campus RepresentativeInfluencers

Links

FaqPricingChrome Extension

Download The App

Get App StoreGet Google Play

Policies

Privacy PolicyTerms of ServiceHonor CodeCommunity Guidelines

Scan To Download

qr-code

Copyright © (2025) ExamLex LLC.

Privacy PolicyTerms Of ServiceHonor CodeCommunity Guidelines