Solved

If the Equation Represents a Hyperbola, Find the Center, Foci y2+4x+2y3=0\mathrm { y } ^ { 2 } + 4 \mathrm { x } + 2 \mathrm { y } - 3 = 0

Question 364

Multiple Choice

If the equation represents a hyperbola, find the center, foci, and asymptotes. If the equation represents an ellipse, find the center, vertices, and foci. If the equation represents a circle, find the center and radius. If the equation represents a parabola, find the focus and directrix.
- y2+4x+2y3=0\mathrm { y } ^ { 2 } + 4 \mathrm { x } + 2 \mathrm { y } - 3 = 0


A) F: (34,1) ;D:y=54\left( \frac { 3 } { 4 } , - 1 \right) ; \mathrm { D } : \mathrm { y } = \frac { 5 } { 4 }
B) F: (0,1) ;( 0 , - 1 ) ; D: x=2x = 2
C) F:(2,1) ;D:y=0\mathrm { F } : ( 2,1 ) ; \mathrm { D } : \mathrm { y } = 0
D) F: (3,1) ;( - 3,1 ) ; D: y=5\mathrm { y } = - 5

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions