Solved

Find a Formula for the Function Graphed f(x)={1,x<01x,x0f ( x ) = \left\{ \begin{array} { l l } 1 , & x < 0 \\ 1 - x , & x \geq 0 \end{array} \right.

Question 350

Multiple Choice

Find a formula for the function graphed.
- Find a formula for the function graphed. -   A)   f ( x )  = \left\{ \begin{array} { l l } 1 , & x < 0 \\ 1 - x , & x \geq 0 \end{array} \right.  B)   f ( x )  = \left\{ \begin{array} { l l } 1 , & x < 3 \\ 1 - x , & x > 3 \end{array} \right.  C)   f ( x )  = \left\{ \begin{array} { l l } 1 , & x \leq 3 \\ 1 - x , & x > 3 \end{array} \right.  D)   f ( x )  = \left\{ \begin{array} { l l } 1 , & x < 3 \\ x - 1 , & x \geq 3 \end{array} \right.


A) f(x) ={1,x<01x,x0f ( x ) = \left\{ \begin{array} { l l } 1 , & x < 0 \\ 1 - x , & x \geq 0 \end{array} \right.
B) f(x) ={1,x<31x,x>3f ( x ) = \left\{ \begin{array} { l l } 1 , & x < 3 \\ 1 - x , & x > 3 \end{array} \right.
C) f(x) ={1,x31x,x>3f ( x ) = \left\{ \begin{array} { l l } 1 , & x \leq 3 \\ 1 - x , & x > 3 \end{array} \right.
D) f(x) ={1,x<3x1,x3f ( x ) = \left\{ \begin{array} { l l } 1 , & x < 3 \\ x - 1 , & x \geq 3 \end{array} \right.

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions