Solved

One of Sin X, Cos X, and Tan X Is sinx=15,x\sin x = - \frac { 1 } { 5 } , \quad x

Question 398

Multiple Choice

One of sin x, cos x, and tan x is given. Find the other two if x lies in the specified interval.
- sinx=15,x\sin x = - \frac { 1 } { 5 } , \quad x in [π2,0]\left[ - \frac { \pi } { 2 } , 0 \right]


A) cosx=265,tanx=612\cos x = \frac { 2 \sqrt { 6 } } { 5 } , \tan x = - \frac { \sqrt { 6 } } { 12 }
B) cosx=265,tanx=612\cos x = - \frac { 2 \sqrt { 6 } } { 5 } , \tan x = - \frac { \sqrt { 6 } } { 12 }
C) cosx=265,tanx=612\cos x = - \frac { 2 \sqrt { 6 } } { 5 } , \tan x = \frac { \sqrt { 6 } } { 12 }
D) cosx=265,tanx=612\cos x = \frac { 2 \sqrt { 6 } } { 5 } , \tan x = \frac { \sqrt { 6 } } { 12 }

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions