Solved

One of Sin X, Cos X, and Tan X Is sinx=53,x in [π2,0]\sin x = - \frac { \sqrt { 5 } } { 3 } , \quad x \text { in } \left[ - \frac { \pi } { 2 } , 0 \right]

Question 32

Multiple Choice

One of sin x, cos x, and tan x is given. Find the other two if x lies in the specified interval.
- sinx=53,x in [π2,0]\sin x = - \frac { \sqrt { 5 } } { 3 } , \quad x \text { in } \left[ - \frac { \pi } { 2 } , 0 \right]


A) cosx=23,tanx=52\cos x = - \frac { 2 } { 3 } , \tan x = \frac { \sqrt { 5 } } { 2 }
B) cosx=23,tanx=52\cos x = - \frac { 2 } { 3 } , \tan x = - \frac { \sqrt { 5 } } { 2 }
C) cosx=23,tanx=52\cos x = \frac { 2 } { 3 } , \tan x = \frac { \sqrt { 5 } } { 2 }
D) cosx=23,tanx=52\cos x = \frac { 2 } { 3 } , \tan x = - \frac { \sqrt { 5 } } { 2 }

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions