Solved

One of Sin X, Cos X, and Tan X Is cosx=22,x in [3π2,π]\cos x = - \frac { \sqrt { 2 } } { 2 } , \quad x \text { in } \left[ - \frac { 3 \pi } { 2 } , - \pi \right]

Question 161

Multiple Choice

One of sin x, cos x, and tan x is given. Find the other two if x lies in the specified interval.
- cosx=22,x in [3π2,π]\cos x = - \frac { \sqrt { 2 } } { 2 } , \quad x \text { in } \left[ - \frac { 3 \pi } { 2 } , - \pi \right]


A) sinx=22,tanx=1\sin x = - \frac { \sqrt { 2 } } { 2 } , \tan x = 1
B) sinx=22,tanx=1\sin x = \frac { \sqrt { 2 } } { 2 } , \tan x = 1
C) sinx=22,tanx=1\sin x = - \frac { \sqrt { 2 } } { 2 } , \tan x = - 1
D) sinx=22,tanx=1\sin x = \frac { \sqrt { 2 } } { 2 } , \tan x = - 1

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions