Solved

Graph Hyperbolas Centered at the Origin
Use Vertices and Asymptotes x24y216=1\frac { x ^ { 2 } } { 4 } - \frac { y ^ { 2 } } { 16 } = 1

Question 19

Multiple Choice

Graph Hyperbolas Centered at the Origin
Use vertices and asymptotes to graph the hyperbola. Find the equations of the asymptotes.
- x24y216=1\frac { x ^ { 2 } } { 4 } - \frac { y ^ { 2 } } { 16 } = 1
 Graph Hyperbolas Centered at the Origin Use vertices and asymptotes to graph the hyperbola. Find the equations of the asymptotes. - \frac { x ^ { 2 } } { 4 } - \frac { y ^ { 2 } } { 16 } = 1    A)  Asymptotes:  y = \pm 2 x    B)  Asymptotes:  y = \pm \frac { 1 } { 2 } x    C)  Asymptotes:  y = \pm 2 x    D)  Asymptotes:  y = \pm \frac { 1 } { 2 } x


A) Asymptotes: y=±2xy = \pm 2 x
 Graph Hyperbolas Centered at the Origin Use vertices and asymptotes to graph the hyperbola. Find the equations of the asymptotes. - \frac { x ^ { 2 } } { 4 } - \frac { y ^ { 2 } } { 16 } = 1    A)  Asymptotes:  y = \pm 2 x    B)  Asymptotes:  y = \pm \frac { 1 } { 2 } x    C)  Asymptotes:  y = \pm 2 x    D)  Asymptotes:  y = \pm \frac { 1 } { 2 } x
B) Asymptotes: y=±12xy = \pm \frac { 1 } { 2 } x
 Graph Hyperbolas Centered at the Origin Use vertices and asymptotes to graph the hyperbola. Find the equations of the asymptotes. - \frac { x ^ { 2 } } { 4 } - \frac { y ^ { 2 } } { 16 } = 1    A)  Asymptotes:  y = \pm 2 x    B)  Asymptotes:  y = \pm \frac { 1 } { 2 } x    C)  Asymptotes:  y = \pm 2 x    D)  Asymptotes:  y = \pm \frac { 1 } { 2 } x
C) Asymptotes: y=±2xy = \pm 2 x
 Graph Hyperbolas Centered at the Origin Use vertices and asymptotes to graph the hyperbola. Find the equations of the asymptotes. - \frac { x ^ { 2 } } { 4 } - \frac { y ^ { 2 } } { 16 } = 1    A)  Asymptotes:  y = \pm 2 x    B)  Asymptotes:  y = \pm \frac { 1 } { 2 } x    C)  Asymptotes:  y = \pm 2 x    D)  Asymptotes:  y = \pm \frac { 1 } { 2 } x
D) Asymptotes: y=±12xy = \pm \frac { 1 } { 2 } x
 Graph Hyperbolas Centered at the Origin Use vertices and asymptotes to graph the hyperbola. Find the equations of the asymptotes. - \frac { x ^ { 2 } } { 4 } - \frac { y ^ { 2 } } { 16 } = 1    A)  Asymptotes:  y = \pm 2 x    B)  Asymptotes:  y = \pm \frac { 1 } { 2 } x    C)  Asymptotes:  y = \pm 2 x    D)  Asymptotes:  y = \pm \frac { 1 } { 2 } x

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions