Solved

Apply Gaussian Elimination to Systems Without Unique Solutions
Use Gaussian x+3y+2z=114y+9z=12x+7y+11z=1\begin{array} { r } x + 3 y + 2 z = 11 \\4 y + 9 z = - 12 \\x + 7 y + 11 z = - 1\end{array}

Question 58

Multiple Choice

Apply Gaussian Elimination to Systems Without Unique Solutions
Use Gaussian elimination to find the complete solution to the system of equations, or state that none exists.
- x+3y+2z=114y+9z=12x+7y+11z=1\begin{array} { r } x + 3 y + 2 z = 11 \\4 y + 9 z = - 12 \\x + 7 y + 11 z = - 1\end{array}


A) {(19z4+20,9z43,z) }\left\{ \left( \frac { 19 z } { 4 } + 20 , - \frac { 9 z } { 4 } - 3 , z \right) \right\}
B) {(19z4+20,9z4+3,z) }\left\{ \left( \frac { 19 z } { 4 } + 20 , - \frac { 9 z } { 4 } + 3 , z \right) \right\}
C) {(19z4+20,9z4+3,z) }\left\{ \left( \frac { 19 z } { 4 } + 20 , \frac { 9 z } { 4 } + 3 , z \right) \right\}
D) {(19z4+20,9z4+3,z) }\left\{ \left( - \frac { 19 \mathrm { z } } { 4 } + 20 , - \frac { 9 \mathrm { z } } { 4 } + 3 , \mathrm { z } \right) \right\}

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions