Solved

Solve the Matrix Equation for X A=[1313]\mathrm { A } = \left[ \begin{array} { r r } 1 & 3 \\ - 1 & - 3 \end{array} \right]

Question 79

Multiple Choice

Solve the matrix equation for X.
-Let A=[1313]\mathrm { A } = \left[ \begin{array} { r r } 1 & 3 \\ - 1 & - 3 \end{array} \right] and B=[1314];X+A=B\mathrm { B } = \left[ \begin{array} { r r } - 1 & - 3 \\ 1 & - 4 \end{array} \right] ; \quad \mathrm { X } + \mathrm { A } = \mathrm { B }


A)
X=[2621]X=\left[\begin{array}{rr}-2 & -6 \\2 & -1\end{array}\right]

B)
X=[6212]X = \left[ \begin{array} { r r } - 6 & - 2 \\ - 1 & 2 \end{array} \right]
C)
X=[2126]X = \left[ \begin{array} { r r } 2 & - 1 \\ - 2 & - 6 \end{array} \right]
D)
X=[1262]X = \left[ \begin{array} { r r } - 1 & - 2 \\- 6 & 2\end{array} \right]

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions