Solved

Model Applied Situations with Matrix Operations
The \perp Shape in the Figure Below Is Shown Using 9 Pixels

Question 50

Multiple Choice

Model Applied Situations with Matrix Operations
The \perp shape in the figure below is shown using 9 pixels in a 3×33 \times 3 grid. The color levels are given to the right of the figure. Use the matrix [131131333]\left[ \begin{array} { l l l } 1 & 3 & 1 \\ 1 & 3 & 1 \\ 3 & 3 & 3 \end{array} \right] that represents a digital photograph of the \perp shape to solve the problem.  Model Applied Situations with Matrix Operations  The  \perp  shape in the figure below is shown using 9 pixels in a  3 \times 3  grid. The color levels are given to the right of the figure. Use the matrix  \left[ \begin{array} { l l l } 1 & 3 & 1 \\ 1 & 3 & 1 \\ 3 & 3 & 3 \end{array} \right]  that represents a digital photograph of the  \perp  shape to solve the problem.   -Adjust the contrast by changing the black to light grey and the light grey to black. Use matrix addition to accomplish this.  A)   \left[ \begin{array} { l l l } 1 & 3 & 1 \\ 1 & 3 & 1 \\ 3 & 3 & 3 \end{array} \right] + \left[ \begin{array} { r r r } 2 & - 2 & 2 \\ 2 & - 2 & 2 \\ - 2 & - 2 & - 2 \end{array} \right] = \left[ \begin{array} { l l l } 3 & 1 & 3 \\ 3 & 1 & 3 \\ 1 & 1 & 1 \end{array} \right]  B)   \left[ \begin{array} { l l l }  1 & 3 & 1 \\ 1 & 3 & 1 \\ 3 & 3 & 3 \end{array} \right] + \left[ \begin{array} { l l l }  - 2 & - 2 & - 2 \\ - 2 & - 2 & - 2 \\ - 2 & - 2 & - 2 \end{array} \right] = \left[ \begin{array} { l l l }  3 & 1 & 3 \\ 3 & 1 & 3 \\ 1 & 1 & 1 \end{array} \right]  C)   \left[ \begin{array} { l l l }  1 & 3 & 1 \\ 1 & 3 & 1 \\ 3 & 3 & 3 \end{array} \right] + \left[ \begin{array} { r r r }  1 & - 1 & 1 \\ 1 & - 1 & 1 \\ - 1 & - 1 & - 1 \end{array} \right] = \left[ \begin{array} { l l l }  3 & 1 & 3 \\ 3 & 1 & 3 \\ 1 & 1 & 1 \end{array} \right]  D)   \left[ \begin{array} { l l l }  1 & 3 & 1 \\ 1 & 3 & 1 \\ 3 & 3 & 3 \end{array} \right] + \left[ \begin{array} { l l l }  2 & 2 & 2 \\ 2 & 2 & 2 \\ 2 & 2 & 2 \end{array} \right] = \left[ \begin{array} { l l l }  3 & 1 & 3 \\ 3 & 1 & 3 \\ 1 & 1 & 1 \end{array} \right]
-Adjust the contrast by changing the black to light grey and the light grey to black. Use matrix addition to accomplish this.


A) [131131333]+[222222222]=[313313111]\left[ \begin{array} { l l l } 1 & 3 & 1 \\ 1 & 3 & 1 \\ 3 & 3 & 3 \end{array} \right] + \left[ \begin{array} { r r r } 2 & - 2 & 2 \\ 2 & - 2 & 2 \\ - 2 & - 2 & - 2 \end{array} \right] = \left[ \begin{array} { l l l } 3 & 1 & 3 \\ 3 & 1 & 3 \\ 1 & 1 & 1 \end{array} \right]
B)
[131131333]+[222222222]=[313313111]\left[ \begin{array} { l l l } 1 & 3 & 1 \\1 & 3 & 1 \\3 & 3 & 3\end{array} \right] + \left[ \begin{array} { l l l } - 2 & - 2 & - 2 \\- 2 & - 2 & - 2 \\- 2 & - 2 & - 2\end{array} \right] = \left[ \begin{array} { l l l } 3 & 1 & 3 \\3 & 1 & 3 \\1 & 1 & 1\end{array} \right]
C)
[131131333]+[111111111]=[313313111]\left[ \begin{array} { l l l } 1 & 3 & 1 \\1 & 3 & 1 \\3 & 3 & 3\end{array} \right] + \left[ \begin{array} { r r r } 1 & - 1 & 1 \\1 & - 1 & 1 \\- 1 & - 1 & - 1\end{array} \right] = \left[ \begin{array} { l l l } 3 & 1 & 3 \\3 & 1 & 3 \\1 & 1 & 1\end{array} \right]
D)
[131131333]+[222222222]=[313313111]\left[ \begin{array} { l l l } 1 & 3 & 1 \\1 & 3 & 1 \\3 & 3 & 3\end{array} \right] + \left[ \begin{array} { l l l } 2 & 2 & 2 \\2 & 2 & 2 \\2 & 2 & 2\end{array} \right] = \left[ \begin{array} { l l l } 3 & 1 & 3 \\3 & 1 & 3 \\1 & 1 & 1\end{array} \right]

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions