Solved

Solve the Problem (x1,y1),(x2,y2)\left( x _ { 1 } , y _ { 1 } \right) , \left( x _ { 2 } , y _ { 2 } \right)

Question 3

Multiple Choice

Solve the problem.
-The area of a triangle with vertices (x1,y1) ,(x2,y2) \left( x _ { 1 } , y _ { 1 } \right) , \left( x _ { 2 } , y _ { 2 } \right) , and (x3,y3) \left( x _ { 3 } , y _ { 3 } \right) is
 Area =±12x1y11x2y21x3y31\text { Area } = \pm \frac { 1 } { 2 } \left| \begin{array} { l l l } x _ { 1 } & y _ { 1 } & 1 \\x _ { 2 } & y _ { 2 } & 1 \\x _ { 3 } & y _ { 3 } & 1\end{array} \right|
where the symbol ±\pm indicates that the appropriate sign should be chosen to yield a positive area. Use this formula to find the area of a triangle whose vertices are (2,10) ,(6,4) ( 2,10 ) , ( 6 , - 4 ) , and (3,9) ( - 3 , - 9 ) .


A) 73
B) 146
C) 1
D) 2

Correct Answer:

verifed

Verified

Related Questions