Solved

Determinants Are Used to Show That Three Points Lie on the Same

Question 138

Multiple Choice

Determinants are used to show that three points lie on the same line (are collinear) . If
-Determinants are used to show that three points lie on the same line (are collinear) . If x1y11x2y21x3y31=0,\left| \begin{array} { l l l } x _ { 1 } & y _ { 1 } & 1 \\x _ { 2 } & y _ { 2 } & 1 \\x _ { 3 } & y _ { 3 } & 1\end{array} \right| = 0 ,
then the points (x1,y1) ,(x2,y2) \left( \mathrm { x } _ { 1 } , \mathrm { y } _ { 1 } \right) , \left( \mathrm { x } _ { 2 } , \mathrm { y } _ { 2 } \right) , and (x3,y3) \left( \mathrm { x } _ { 3 } , \mathrm { y } _ { 3 } \right) are collinear. If the determinant does not equal 0 , then the points are not collinear Are the points (109) ,(0,5) ( 10 - 9 ) , ( 0,5 ) and (3036) ( 30 - 36 ) collinear?


A) No
B) Yes

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions