Solved

Decompose P/Q, Where Q Has a Prime, Repeated Quadratic Factor 4x3+4x2(x2+5)2\frac { 4 x ^ { 3 } + 4 x ^ { 2 } } { \left( x ^ { 2 } + 5 \right) ^ { 2 } }

Question 262

Multiple Choice

Decompose P/Q, Where Q Has a Prime, Repeated Quadratic Factor
Write the form of the partial fraction decomposition of the rational expression. It is not necessary to solve for the
constants.
- 4x3+4x2(x2+5) 2\frac { 4 x ^ { 3 } + 4 x ^ { 2 } } { \left( x ^ { 2 } + 5 \right) ^ { 2 } }


A) 4x+4x2+5+20x20(x2+5) 2\frac { 4 x + 4 } { x ^ { 2 } + 5 } + \frac { - 20 x - 20 } { \left( x ^ { 2 } + 5 \right) ^ { 2 } }
B) 4x4x2+5+20x+20(x2+5) 2\frac { 4 x - 4 } { x ^ { 2 } + 5 } + \frac { - 20 x + 20 } { \left( x ^ { 2 } + 5 \right) ^ { 2 } }
C) 4x+4x2+5+20x+20(x2+5) 2\frac { 4 x + 4 } { x ^ { 2 } + 5 } + \frac { 20 x + 20 } { \left( x ^ { 2 } + 5 \right) ^ { 2 } }
D) 4x+4x2+5+20x20(x2+5) 2\frac { 4 x + 4 } { x ^ { 2 } + 5 } + \frac { 20 x - 20 } { \left( x ^ { 2 } + 5 \right) ^ { 2 } }

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions