Solved

Decompose P/Q, Where Q Has a Prime, Repeated Quadratic Factor 6x35x2+14x19(x2+3)3\frac { 6 x ^ { 3 } - 5 x ^ { 2 } + 14 x - 19 } { \left( x ^ { 2 } + 3 \right) ^ { 3 } }

Question 183

Multiple Choice

Decompose P/Q, Where Q Has a Prime, Repeated Quadratic Factor
Write the form of the partial fraction decomposition of the rational expression. It is not necessary to solve for the
constants.
- 6x35x2+14x19(x2+3) 3\frac { 6 x ^ { 3 } - 5 x ^ { 2 } + 14 x - 19 } { \left( x ^ { 2 } + 3 \right) ^ { 3 } }


A) 6x5(x2+3) 2+4x4(x2+3) 3\frac { 6 x - 5 } { \left( x ^ { 2 } + 3 \right) ^ { 2 } } + \frac { - 4 x - 4 } { \left( x ^ { 2 } + 3 \right) ^ { 3 } }
B) x+1x2+3+6x5(x2+3) 2+4x4(x2+3) 3\frac { x + 1 } { x ^ { 2 } + 3 } + \frac { 6 x - 5 } { \left( x ^ { 2 } + 3 \right) ^ { 2 } } + \frac { - 4 x - 4 } { \left( x ^ { 2 } + 3 \right) ^ { 3 } }
C) 6x+5(x2+3) 2+4x+4(x2+3) 3\frac { 6 x + 5 } { \left( x ^ { 2 } + 3 \right) ^ { 2 } } + \frac { - 4 x + 4 } { \left( x ^ { 2 } + 3 \right) ^ { 3 } }
D) xx2+3+6x5(x2+3) 2+4x4(x2+3) 3\frac { x } { x ^ { 2 } + 3 } + \frac { 6 x - 5 } { \left( x ^ { 2 } + 3 \right) ^ { 2 } } + \frac { - 4 x - 4 } { \left( x ^ { 2 } + 3 \right) ^ { 3 } }

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions