Solved

Use Properties of Logarithms to Condense the Logarithmic Expression 15[5ln(x+1)lnxln(x21)]\frac { 1 } { 5 } \left[ 5 \ln ( x + 1 ) - \ln x - \ln \left( x ^ { 2 } - 1 \right) \right]

Question 235

Multiple Choice

Use properties of logarithms to condense the logarithmic expression. Write the expression as a single logarithm
whose coefficient is 1. Where possible, evaluate logarithmic expressions.
- 15[5ln(x+1) lnxln(x21) ]\frac { 1 } { 5 } \left[ 5 \ln ( x + 1 ) - \ln x - \ln \left( x ^ { 2 } - 1 \right) \right]


A) ln(x+1) 5x(x21) 5\ln \sqrt [ 5 ] { \frac { ( x + 1 ) ^ { 5 } } { x \left( x ^ { 2 } - 1 \right) } }
B) ln(x+1) 5(x21) x5\ln \sqrt [ 5 ] { \frac { ( x + 1 ) ^ { 5 } \left( x ^ { 2 } - 1 \right) } { x } }
C) ln5(x+1) x(x21) 5\ln \sqrt [ 5 ] { \frac { 5 ( x + 1 ) } { x \left( x ^ { 2 } - 1 \right) } }
D) lnx(x+1) 5(x21) 5\ln \sqrt [ 5 ] { \frac { x ( x + 1 ) ^ { 5 } } { \left( x ^ { 2 } - 1 \right) } }

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions