Solved

Solve the Problem d=L2+W2+H2\mathrm { d } = \sqrt { \mathrm { L } ^ { 2 } + \mathrm { W } ^ { 2 } + \mathrm { H } ^ { 2 } }

Question 51

Multiple Choice

Solve the problem.
-A formula for the length of a diagonal from the upper corner of a box to the opposite lower corner is d=L2+W2+H2\mathrm { d } = \sqrt { \mathrm { L } ^ { 2 } + \mathrm { W } ^ { 2 } + \mathrm { H } ^ { 2 } } , where L,W\mathrm { L } , \mathrm { W } , and H\mathrm { H } are the length, width, and height, respectively. Find the length of the diagonal of the box if the length is 20 inches, width is 14 inches, and height is 9 inches. Leave your answer in simplified radical form.
 Solve the problem. -A formula for the length of a diagonal from the upper corner of a box to the opposite lower corner is  \mathrm { d } = \sqrt { \mathrm { L } ^ { 2 } + \mathrm { W } ^ { 2 } + \mathrm { H } ^ { 2 } } , where  \mathrm { L } , \mathrm { W } , and  \mathrm { H }  are the length, width, and height, respectively. Find the length of the diagonal of the box if the length is 20 inches, width is 14 inches, and height is 9 inches. Leave your answer in simplified radical form.   A)   \sqrt { 677 }  in. B)   \sqrt { 86 } \mathrm { in } . C)   \sqrt { 43 }  in. D)   \sqrt { 1354 } \mathrm { in } .


A) 677\sqrt { 677 } in.
B) 86in\sqrt { 86 } \mathrm { in } .
C) 43\sqrt { 43 } in.
D) 1354in\sqrt { 1354 } \mathrm { in } .

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions