Solved

Factor Completely p6+q24r18p ^ { 6 } + q ^ { 24 } r ^ { 18 }

Question 72

Multiple Choice

Factor completely. If the polynomial cannot be factored, write ʺprime.ʺ
- p6+q24r18p ^ { 6 } + q ^ { 24 } r ^ { 18 }


A) (p+q4r3) (pq4r3) (p4p2q8r6+q16r12) \left( p + q ^ { 4 } r ^ { 3 } \right) \left( p - q ^ { 4 } r ^ { 3 } \right) \left( p ^ { 4 } - p ^ { 2 } q ^ { 8 } r ^ { 6 } + q ^ { 16 } r ^ { 12 } \right)
B) (p3+q12r9) (p3q12r9) \left( \mathrm { p } ^ { 3 } + \mathrm { q } ^ { 12 } \mathrm { r } ^ { 9 } \right) \left( \mathrm { p } ^ { 3 } - \mathrm { q } ^ { 12 } \mathrm { r } ^ { 9 } \right)
C) (p+q4r3) (pq4r3) (p2+pq4r3+q8r6) (p2q4r3+q8r6) \left( p + q ^ { 4 } r ^ { 3 } \right) \left( p - q ^ { 4 } r ^ { 3 } \right) \left( p ^ { 2 } + p q ^ { 4 } r ^ { 3 } + q ^ { 8 } r ^ { 6 } \right) \left( p ^ { 2 } - q ^ { 4 } r ^ { 3 } + q ^ { 8 } r ^ { 6 } \right)
D) (p2+q8r6) (p4p2q8r6+q16r12) \left( p ^ { 2 } + q ^ { 8 } r ^ { 6 } \right) \left( p ^ { 4 } - p ^ { 2 } q ^ { 8 } r ^ { 6 } + q ^ { 16 } r ^ { 12 } \right)

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions